AN APPRAISAL OF SOCIAL INEQUALITIES IN CENTRAL IBERIA (c. 5300-1600 CAL BC)

Pedro Díaz-del-Rio (*)

ABSTRACT

The present paper is an overview of actual evidences for socioeconomic and political inequalities in Central Iberia, from the Neolithic to the Early Bronze Age. It focuses in mortuary practices, labor investments, craft production and settlement organization, disentangling the keys of prehistoric political economy. Following the evidence, I argue that the existence of permanent social inequalities would have been limited by three factors: a limited amount of surplus, the failure of small scale groups to increase the amount of labor force, and most important of all, the absolute absence of means of accumulation of value.

RESUMEN

El presente trabajo es una revisión de las evidencias actuales de desigualdad socioeconómica y política en el centro de la Península Ibérica, del Neolítico a los inicios de la Edad del Bronce. Evalúa las evidencias de prácticas funerarias, inversión de trabajo, artesanía y organización de los asentamientos, desenredando las claves de la economía política prehistórica. Atendiendo a la evidencia, argumento que la existencia de desigualdades sociales permanentes se encontraría limitada por tres factores: una limitada cantidad de excedente, la incapacidad para incrementar la cantidad de fuerza de trabajo por parte de grupos de pequeño tamaño y, sobre todo, la ausencia absoluta de medios de acumulación de valor.

(*) Departamento de Prehistoria, Instituto de Historia, CSIC. C/ Serrano 13, 28001 Madrid, Spain. diazdelrio@ih.csic.es
1. INTRODUCTION

The aim of this paper is to present a comprehensive state of the art of the economic and political nature of social relations in central Iberia during the III and II millennia BC. It highlights both the actual empirical limits to our inquiries, and what we understand as promising future research lines.

Southeastern Iberia has been the main laboratory for debates surrounding prehistoric social inequality since the seventies. Millarian and Argaric cultures offered a rich but poorly documented evidence. Processual models shared the optimistic view that the archaeological record contained enough information on social inequalities as to orient field research programs in order to assess their nature (Gilman & Thornes 1985; Chapman et al 1987). As Chapman (2003: 109-112) points out, fieldwork was not always oriented towards hypothesis testing, and the subsequent qualitative and quantitative increase of chronological, economic and environmental data has not resulted in a consensus over the interpretation (Chapman 2003; Gilman 2001). The political conditions of southeastern Chalcolithic and Bronze Age societies are currently under debate, but scholars can now base their interpretations on a reasonable quality evidence.

This has not been the case for Central Iberia. The archaeological record did not offer any clear evidence of social inequalities as to attract processual oriented scholars interested in the subject matter (with some remarkable exceptions such as R. Harrison 1977; 1985; 1995). Consequently, the construction of culture-history frameworks remained the main object of archaeological inquiry. Spanish scholars have only recently undertaken the challenge of processual frameworks (Díaz-del-Río 2001; Garrido 2000; Muñoz 2000), and their search for social inequalities has afforded few and ambiguous results.

Throughout this paper I will argue that the existence of permanent social inequalities would have been limited by three key features: a limited amount of surplus, the failure of small scale groups to increase the amount of labor force, and most important of all, the absolute absence of means of accumulation of value. In order to do so, I will present the archaeological evidence following the standard chronological order, from the Neolithic to the Early Bronze Age, period known throughout Europe to have the first evidences for permanent social inequalities.

2. CENTRAL IBERIA

The Spanish Meseta is the largest geographical unit of Iberian Peninsula (Figure 1). Located at the center of Iberia, it is a 600 m high 181.000 Km² Tertiary plateau, partially surrounded by mountain chains, and divided in two by the Central System mountains, running northeast-southwest. With two of the peninsulas main rivers crossing each side of this plain, Tagus and Duero, these vast valley plains have rich soils with frequent permanent pasture spots. Highlands, although predominantly pasture lands, are rich in other specific raw materials used by prehistoric communities, particularly granite, amphibolite and copper. Interfluvial, higher plateaus and southeast La Mancha region have low agricultural potential dry lands, actually cultivated with extended cereal crops, vine and olive. Both north and south mesetas have continental climate, with a considerable dry and hot summer and cold and rainy winters, with a clear difference between the 1170 mm mean rainfall in peripheral highland areas and the 500 mm of the lowland river basins. This paper will focus on the spanish northern Meseta and the central Tagus valley.

3. NEOLITHIC BACKGROUND

Traces of early Neolithic groups (5300-4700 cal BC) have been almost lacking until the nineties and are still scarce when compared to later phases of Prehistory. Sites are frequently located in river valleys or bluffs, but also in certain caves. Settlements are defined by the presence of relatively small concentrations of underground features, some including primary burials. As in most western Europe, houses are circular when found. They all share the presence of impressed ware, portable and scarce lithic utensils, lack of expedient technologies, and occasional bone artifacts. The few published faunal analyses, such as those
from the cave of La Vaquera, suggest that the role of domesticates was important only more than half a century after the initial presence of pottery in the sequence (Morales & Martín 2003; Morales 2003). This is also the case for cereal pollen, present only by the end of phase II (4600-3600 cal BC), and the minimal amount of cereal remains during the earliest occupation of the cave, especially when compared to subsequent phases (López et al 2003). Free-threshing wheat dominate throughout the sequence at Vaquera, while in the Ambrona valley, although with extremely poor samples (Stika 1999), evidence supports the dominant role of hulled wheat, both einkorn and emmer (Peña-Choocarro in press).

Early Neolithic communities seem to have been very small, with probable short-term year-round settlement patterns, and variable dependence on domesticats. Under these conditions, groups would have required permanent cooperative relations in order to maintain their basic reproduction, favoring the rapid spread of the ‘Neolithic package’. Although this package was present in the Meseta since at least 5300 cal BC, the role of domesticates varied through time and, most of all, regionally. This variability should be explained before accepting current hypothesis on the rapid colonization of central Iberia by peripheral Neolithic incomers (Kunst & Rojo 1999).

The almost ‘invisible’ settlement evidence contrasts with some recent discoveries, as the flint mine of Casa Montero (Consuegra et al 2004) (Figure 2). Open-area excavations have documented over 4000 vertical shafts, measuring one meter mean wide and depths up to 7 meters. Located by a river bluff, where scattered Neolithic settlements are known, it seems to be the result of reiterative short-term seasonal expeditions. Not one shaft cuts previous extracting pits, suggesting that the time-span of all mining activity may have been quite short, maybe less than a few centuries. Variable quality flint was mined and knapped in order to obtain blades and occasionally flakes, products that would be finally transported off-site. All the remaining waist was dumped back into the shafts. This evidence opens promising lines of research. On the one hand, flint-tool production and use is probably the only complete craftwork we can track from procurement to final discardment, something almost impossible to assess for other aspects of Neolithic economy. On the other, the study of extraction methods may shed some light on the manner and scale in which labor was mobilized. Considering the size of Neolithic groups, and the resulting population densities, one would again expect cooperative social mechanisms in order to both mobilize work-groups and distribute the resulting products. As a matter of fact, any group wanting to exercise a monopoly over certain flint resources would have had to confront the problem of an extremely rich flint-resource environment as is the case of Madrid region.

The contrast between the scale of settlements, and the cumulative and finally monumental landscape created at the flint mine, can be also tracked when comparing settlements and funerary patterns. Although regionally variable, mounds and megaliths became part of funerary programs some centuries after the earliest Neolithic. Recent reviews (Delibes & Rojo 1997) suggest that monument construction went through at least two subsequent phases. During the last quarter of the Fifth millennium cal BC megalithic and non-megalithic mounds were all constructed in such a way that access to the chamber was necessarily performed from the top. Passage graves increased in size and presence throughout the Fourth millennium, and by its end, the biggest dolmens were erected. A similar trend has been suggested for Northwestern galician megaliths (Alonso & Bello 1997). These changes in monument design suggest that the increase in the amount of labor invested (and probably group size involved) ran parallel to the transformation in the way funerary rituals were performed. While smaller groups designed platforms that would have inevitably required staged acts, subsequent constructors, probably incorporating more than one group, finally limited ritual action to those who acceded into the funerary camera through the corridor. The increase in the scale of cooperative labor may have involved the renegotiation of social roles in and between groups.

Nevertheless, it is difficult to assess if these changes were materialized in a differential treatment of the deceased. Although detailed burial disposal, paleoanthropoligical, and dietary analysis are scarce, recent research has revealed an aspect previously unknown that may shed some light on the political role of funerary programs: the increasing evidence for burning and ritual capping of charnel houses (Delibes & Etexberria 2002: 50). One such case is La Peña de la Abuela (Rojo et al 2002), a limestone charnel house constructed over a 10 cm platform built with soil that incorporated scattered pottery and lithic remains.
These remains suggest some pre-constructive activity, although not necessarily in the immediate area. The interior had defined spaces, with some individualized burials associated with abundant offerings, and a remaining space containing fewer offerings and a mixture of human bones. Anthropological analysis has determined the existence of at least 11 individuals, including 2 children, and a possible similar amount of adult men and women (Lohrke et al 2002). This pattern has been interpreted as a result of a social segregation of space, where the richest primary burials represent a “noble area” (Rojo et al 2002). An alternative view would suggest that the observed pattern is a characteristic archaeological result of a charnel house mortuary process. The recovered evidence would represent just “a phase in a program of mortuary treatment that included exhumation” (Brown 1995: 16). This of course would limit our expectations with respect to social differentiation (or inequalities) through the direct observation of this kind of burial practices. The physical disposal of the deceased would then be a consequence of the specific moment when the final ritual act was performed. This involved the intense burning, boiling of quicklime through watering, and final capping of the charnel house remains, a mixture of water and fire not uncommon in western European Neolithic (Bradley 2005). Interestingly enough, in other charnel houses as La Sima (Rojo et al 2003), remains were subsequently monumentalized through a megalithic passage grave.

The overall picture suggests that funerary analysis has oversimplified its potential when evaluating social and political relations. Collective funerary rituals may offer one of the keys to understand Neolithic political economy. All in all, funerary patterns suggest the birth of emerging lineages that lacked the required massing effect to overcome social limitations for the establishment of regional polities. Cyclical involvement in labor investments and ritual performance, mainly but not only in funerary monuments, was one of the mechanisms by which small Neolithic communities assured their reproduction. It may have also been the channel through which tenure and a sense of community beyond individual groups was maintained.

Throughout the subsequent Copper Age communities grew in size, and increased their sedentariness. As in all Iberia, main labor investments were transferred to the domestic sphere.

4. THE COPPER AGE

Chalcolithic sites (3050-2200 cal BC) have been traditionally known to be defined by random distributions of pit structures. Clusters of hearths, underground storage or other functional domestic facilities are found horizontally distributed in areas up to two or three hectares. Until recent years, scarce evidence of circular wattle and daub dwellings, the absence of deep stratified deposits, and the overall distribution of sites were basic arguments to defend the pastoral semi-nomadic character of Copper Age groups.

Systematic extensive survey programs, as the already completed 7995 Km² Madrid region, have documented a dense distribution of Third millennium BC sites. Although settlement locations are varied (river beds, gullies, plateau bluff edges, knolls or hills), sites cluster throughout river basins. These areas concentrate the richest soils and permanent pasture lands. Up to date, no scholar has argued for the existence of a settlement hierarchy, although evidence suggests an increase in population densities when compared to previous phases.

Research on III millennium BC settlements has challenged commonly subscribed views about the homogeneous structure of all sites. Air-photographic techniques have documented the existence of up to 13 ditch enclosures in northern Meseta (Ariño & Rodríguez 1997; Delibes 2001), all of them occupying fertile soils, while open area excavations in Madrid region have recovered evidence of three ditched enclosures ranging 50 to 100 m in diameter (Figure 3). Although they are all located in different settings such as river beds, hills and gullies, evidence seems to suggests permanent habitation (Díaz-del-Río 2004a). The three of them had their ditches filled before any presence of bell-beaker artifacts. Anyhow, these villages where not abandoned by the second half of III millennium BC. On the contrary, two of them had scattered presence of bell-beaker ceramic fragments and the three of them had Middle BA
evidence on top or in the immediate surroundings. In addition to ditch enclosures, very few cases of stone walled enclosed settlements are known, some of them peripheral to the Meseta as the village and rock art ‘sanctuary’ of El Pedroso (Delibes et al 1995, Bradley 2005: 111).

This new evidence is more complex than any scholar would have expected a few years ago. But one may notice that most of this kind of habitation sites are just as small or even smaller in dimensions and labor investment than similar Neolithic and contemporary Chalcolithic European sites. Although labor force and earthworks may be important components in the construction of monumental landscapes, and material expressions of the appropriation of land and surrounding resources, their relation to the existence of social inequalities does not seem to be straightforward. Central Iberian sites, and in fact most of fortified or enclosed settlements of Iberian Chalcolithic, can be reasonably explained through the mobilization of immediate kin-groups. In any case, the extremely limited scale of labor investments in central Iberian sites stands out when compared to other regional developments, as those documented in Andalusia (Díaz-del-Río 2004b). If the growth of labor force is a straightforward way to increase production, one would suggest that central Iberia Copper Age groups lacked the required surplus to sustain long-term socio-political inequalities.

Late in relation to other European scholars, some Portuguese and Spanish archaeologists have suggested a ritual role for Chalcolithic enclosures (Jorge 1998; 2002; Delibes 2001). Others have kept a more functional-oriented interpretation (Monks 1997; Díaz-del-Río 2004a). Of course, the fact that a reasonable functional interpretation can be argued for most prehistoric fortifications (Arkush & Stanish 2005), does not limit the role of ritual or, to say better, the possible ritualization of domestic life (Bradley 2005).

But if something seems clear when compared to the previous Neolithic is the domesticity of Chalcolithic evidence. Wattle and daub circular dwellings seem to be the most common type of buildings, but occasional stone basements are documented (Lopez Plaza 1991; Diaz-del-Rio 2001). Five meter mean diameter dwellings, generally including underground storage facilities, hearth, flint-knapping activities, and grinding stone tools, suggest social organization of labor based on nuclear families. Most artifacts function to meet domestic needs, and were made, used and discarded in domestic spaces. Large amounts of pottery fragments are usually found when digging settlements. They mostly respond to simple spherical or semispherical non-decorated bowls, with extremely small percentages of carented bowls, simple chevron incised rim decorations and an absolute absence of big storage pithoi. Although lithic analysis have been frequently focused on fine flint tools, the most common and distinctive elements are non-retouched flakes, generally summing more than 95 percent of stone artifacts. This expedient technology seems to be a result of the basic need of cutting edges in domestic activities, and a predominant non-specialized or standardized industry. Flint resources are accessible in Tertiary formations, and frequently scattered along river valleys, that is, generally within the immediate access of settlements or through down-the-line exchange mechanisms.

Low-scale and scarcely specialized copper production is basically found in residential sites. Although other objects have been occasionally found, generally in old archaeological uncontrolled earth works or collections, awls are the most frequently recovered object. No more than a hundred metal artifacts are known scattered throughout Northern Meseta (Delibes et al 1999), most of them without any spatial relation with primary source locations, situated in surrounding mountains, where granite and amphibolite are also accessible. All three have different but permanent presence in domestic contexts from Chalcolithic to LBA. Some objects provide clear evidence of a dynamical interregional exchange system, but with “essentially local patterns of procurement and distribution” (Harrison & Orozco 2001: 123). Low but widespread distribution of variscite beads, used from the fourth to mid third millennium BC (Blanco et al 1996; Harrison & Orozco 2001) are found together with granite grinding stones, amphibolite and other ground stones, most of them elements of regular domestic use.

Paleoecological evidence is still to scarce. Systematic flotation techniques have not been a frequent procedure, although when applied show wheat and barley presence and generalized weed related to abandoned or altered agricultural fields (Díaz-del-Rio et al 1997). Faunal analysis demonstrate the
absolute predominance of domestic species: sheep/goat, cow, and pigs sum up more than 87 percent mean of total faunal remains. When related to weight, cows and pigs are especially significant. Sites in northern Meseta, as Las Pozas (3040-2217 cal BC), show important evidence of draught cows as well as butchery patterns related to seasonal consumption of young sheep, a probable evidence of feasting activities (Morales 1992; Díaz-del-Río 2001). Most scholars agree on the existence of all components of the secondary products revolution (Sherrat 1981). The up to date only trace elemental composition analysis of Chalcolithic burials shows the importance of vegetable sources and a middle/low ingest of animal proteins (Trancho et al 1996). Overall, palynological regional research programs (López 1997), have shown the existence of an open semi-steppe environment in the surroundings of settlements, usually related to the presence of a socially modified agroforestal landscape (dehesa).

No regular funerary pattern has been determined (Fabian 1995). Chalcolithic funerary practices involved the reuse of megaliths, small mound construction, and caves for collective burials. They are mostly secondary burials that include small groups of individuals, frequently representing all genders and ages. Grave deposits, when documented and individually ascribed, are qualitative and quantitatively scarce, generally variscite beads, flint tools and occasional small non-decorated vessels. Only occasionally single pit graves with primary and secondary burials are found in habitational sites, although scattered human bones are not infrequent in settlements. All this suggests the existence of funerary programs that involve primary burials or exposure of dead bodies in the surroundings of settlements, and their final deposition as secondary burials in collective shrines. Although always studied as separate non-related burial practices, they may all represent stages in the social life of dead bodies. These secondary burial practices have been traditionally considered a result of egalitarian social relations, because of the apparent simplicity of the final collective and undifferentiated body disposal. The change from collective to the single burial bell-beaker funerary program signaled the evolutionary shift from the simple to the complex. But options for negotiating social and political relations are necessarily multiplied in secondary burial processes (Kuijt 2000), and the shift to primary burial practices need not necessarily be interpreted in terms of increasing complexity.

To sum, regional evaluation of first half of III millennium BC shows an ubiquitous domestic evidence related to the first unambiguous village settlements. They are small, and probably based on nuclear families. The main social dynamic seems to relate to the increased permanence and territoriality of groups, something that would have contradicted their need for cooperative social mechanisms to assure their reproduction. This dynamic may well be a generalized phenomenon in most early agricultural societies. Differential consumption patterns inside settlements and asymmetrical exchange mechanisms may have been present, but are by no means obvious. Be as it may, when compared to previous and latter phases, the Copper Age stands out because of its rich evidence on productive activities and labor organization. The limited concentration of labor force, surplus potential, and absolute lack of wealth finance, are all key to understand the conditions of the political economy in which bell-beaker artifacts appeared.

5. BEAKERS

Bell-beakers represent the second generalized pan-European phenomena after megalithism, and has been frequently associated with the rise of chieftoms or big-men societies. As with megalithism, evidence suggests an important degree of temporal and regional variability, especially when incorporating quantitative regional data. In Central Iberia, known to be the origin of the Ciempozuelos style, bell beakers have always been a fuzzy ‘phenomenon’. This situation relates to two main features of the traditional pan-european framework: its chronology and its assumed relation to emergent social complexity.

Although Chalcolithic has been traditionally divided in ‘pre-bellbeaker’ and ‘bellbeaker’, actual radiocarbon dates and contextual studies show the existence of beaker artifacts both in Chalcolithic (2700-2200 cal BC) and early Bronze Age contexts (2250-1630 cal BC). In fact, some of the richest beaker burials as Fuente Olmedo (2200-1880 cal BC) may be contemporaneous to the latter. As a result,
and with a probable time span of 1000 years (2700-1700 cal BC), the traditional ascription of bell-beaker style to a Chalcolithic ‘culture’ or ‘phase’ has not helped to clarify patterns of social change.

Beaker pottery fragments are extremely scarce and percentually underrepresented in all habitational sites, always less than 5% of total pottery fragments. Surprisingly enough, this highly variable presence of beaker assemblages has been frequently accepted as the earliest evidence of big-men or chiefdom societies in central Iberia. The argument is mainly based on funerary evidence, by emphasizing some exceptionally ‘rich’ individual burials (Delibes et al 1999; Blasco et al 1998). But this evidence is also extremely variable.

The fact that variability has not been taken in account seems evident when revisiting El Ventorro, a site known since the seventies (Harrison et al 1975; Priego & Quero 1992). Contrary to the general low percentage of bellbeakers in domestic contexts, El Ventorro has the highest accumulation of Chalcolithic ‘garbage’ per square meter of the whole Meseta (Díaz-del-Río 2001). Pithouse 013 (Priego & Quero 1992), a 44 square meter feature, contained an impressive collection of artifacts: 33595 ceramic fragments, 106 of them bell-beakers, 2792 flint items, 3283 faunal remains with an important percentage of juvenile-adult pig consumption (Morales & Villegas 1994), 41 bone artifacts, 24 granite grinding stones, 7 ground stone tools, and sporadic human bones. An important amount of copper smelting refuse was also recovered.

The exceptionality of this midden stands out when compared to other contemporary sites. It is the first outstanding evidence for differential accumulation of refuse recovered in a so-called dwelling. The evidence is not unambiguous though. Stratigraphic relations, concentration and disposition of artifacts, lack of structural features, and a windstopper associated to a hearth seems to suggest that the feature may not have been a building, but an open-air structure. I have recently interpreted it as a communal or supracommunal feasting area, maybe related to corporate groups (Díaz-del-Río 2001). The material results of feasting activities are also ambiguous by nature, but if I understand this midden correctly, it may be suggesting that by the end of the Third millennium BC groups were occasionally consuming surplus collectively. Competitive or not, these kind of collective feasting would display the arena for the negotiation of social roles beyond the individual groups.

Extreme variability is also evident when evaluating funerary patterns. Individuals were buried in previously built megaliths, in small mounds, caves, or individual pit graves. Seventy six funerary sites are known for the Meseta, but only 18 are considered to have a “complete” beaker set (Garrido 2000: 61). Out of these, the amount of burial goods range from a beaker and a bowl to the unique Fuente Olmedo single burial, with a complete ceramic set (beaker, bowl and cazuela) and 18 metal objects, including a golden diadem. All the evidence suggests a limited capacity to accumulate wealth, although occasionally some outstanding burials did occur.

We cannot aspire to assess general standardization patterns in beaker productions. Analyzing their variability from local to regional scales may increase our knowledge in the way beaker artifacts were produced and, when so, distributed. Artisans did share certain skills, aesthetic templates, and practical knowledge, but their production does not seem to be standardized. Of course, multiple production events and time span of analyzed samples frequently blur standardization signatures (Blackman et al 1993). When compared at a regional scale, coefficients of variation (CV) (Table 1) for all types of beaker pottery heights and rim diameters are always higher than 15%. The only exception is the clearly standardized cazuela set from the Ciempozuelos burials, which are nevertheless decorated following differentiated patterns. They were deposited in four single burials, probably two-young and adult- females, a senile male with a double trepanation (Liesau & Pastor 2003), and an undetermined senile individual (Sampedro & Liesau 1998). The set suggests the work of a single artisan, and the contemporaneity of all burials, maybe kin-related individuals. If so, they may indicate that certain families or individuals obtained a differentiated status in life as to receive a specific treatment when buried. Hosting of collective actions as those documented at El Ventorro could have been the means by which they acceded to higher status. But it is unclear if these individuals had the means to subordinate society beyond the local group, as to assure
the inheritance of their position in the long term. The fact that beaker burials are so unusual throughout a millennium, and their outstanding variability in wealth, does not suggest so.

The actual archaeological record does not support the understanding of bellbeaker assemblage as an evidence of the first central Iberian chiefdoms. Settlement evidence is still too scarce to evaluate the role of these items in the domestic sphere, and changes from previous domestic patterns are not obvious except for some unique sites as El Ventorro. Funerary programs show minimal labor investment in graves and highly variable deposition of artifacts, some of them known to be involved in domestic production and consumption. Only metal objects as palmela arrowheads, axes and daggers, all particularly associated with burials, seem to display a minimally *materialized* power (De Marrais et al 1996).

The long time span of bellbeaker threatens any one-meaning explanation. A reasonable perspective should accept that bellbeaker *phenomenon* in central Iberia is made possible through a process of capital intensification developed throughout the first half of third millennium BC. All evidence seem to support the occasional presence of leaders with acquired status, who probably manipulated social relations in order to obtain low-rate and irregular prestige benefits. It seems difficult to assess their capabilities in exercising or expanding their social position beyond the local group.

The limited evidence for wealth or prestige items disappears in the subsequent Bronze Age. Domesticity, and the critical need to maintain the reproduction of small-scale groups, becomes the main feature of the archaeological record.

6. THE EARLY BRONZE AGE

The Early or ‘Classic’ Bronze Age in central Iberia (2250-1630 cal BC) contrasts with other areas of the Peninsula because of its lack of monumentality and the scarce evidence for social differentiation in burial practices. Sites are basically defined by the generalization of pit structures, frequently interpreted as underground storage and other domestic facilities. These appear in clusters of less than 1 to 2 hectares, occupying similar topographical positions as previous Copper Age settlements. Labor force is no longer deployed in the construction of enclosures. Sites tend to look alike, and scholars have frequently accepted the lack of clear discernible differentiation between them.

However, site variability does exist. This has been recently tested by analyzing the variance of pit volume, frequency of pottery and lithic refuse in four close by EBA sites (Díaz-del-Río & Vicent in press) (Figure 4). Results show that, aside from chronological differences, functional diversification may be at work. Extensive use of landscape by small-scale groups in a semisteppe environment would explain the observed pattern, but intrasite asymmetries in for example the distribution of storage capacity cannot be assessed by now. Harrison (1985; 1993; 1994) has stressed the importance of mobile means of production when interpreting central Iberian social dynamics. This is, of course, because in a relatively stable agricultural community, “raising animals is also the major way of converting surplus agricultural crops into […] social and economic currencies” (Hayden, 2001: 577). Unfortunately, most central Iberian Bronze Age sites have an extreme poverty of faunal remains.

Changes in craftwork production suggest a sedentary lifestyle. Pottery types include for the first time in Prehistory big and frequently decorated storage jars. The most evident transition to EBA happens to be observed through lithic tools, with a general trend to the oversimplification of flint industries, and the generalization of sickle toothed flint flakes (Harrison, 1995: 69). This reduction in both types and quantity of flint production has been frequently considered as a result of the shift to metal tools. Nevertheless, infrequent copper and occasional bronze objects do not seem to substitute the function of previous stone industries.

Materialization of wealth is generally associated with the presence of durable objects, as for example metalwork. In Central Iberia, the amount of metallurgy is minimal when compared to its contemporary Southeast (Montero, 1994; 1998) (Table 2). Scarce metal ornaments are known in the Meseta during
Chalcolithic and EBA, something that contrasts with the dramatic inversion of metal production during
the Millares-Argar transition. Copper production was a domestic semi-specialized activity, as the
generalized distribution of smelting pots in settlements seem to demonstrate. With a simple technology
that demanded no specialist craftsmen, scholars stress the unfeasibility of a specific metallurgical
development associated to a new set of social relations (Rovira and Montero 1994). Although they may
have occasionally acted as status symbols, their role in the creation of exchange webs or alliance
formation seems difficult to support.

A relevant aspect of the EBA archaeological record is the presence of human burials in almost all
settlements. The most frequent pattern is the flexed fetal deposition inside underground storage pits,
occasionally accompanied by complete or partial domestic animal offerings (Figure 5). Burials generally
lack metal objects, pots and other items frequently associated to bell-beaker funerary patterns. Their main
trend is the presence of an important number of infant burials, at least half of them associated to immature
or subadult domestic animal offerings. Adult male and female burials have almost identical quantitative
representation, and similar associated offerings or personal items, all extremely modest (bone pendant or
awl, a few limestone beads). All this suggests that in these small-scale groups with high infant mortality,
descendants became the key factor for the reproduction of labor force. The association of burials with
underground storage facilities also highlights the importance given to life cycles, and may reveal the
critical productive and reproductive conditions of these groups.

7. CONCLUDING REMARKS

Throughout the last ten years scholars have disagreed on the nature of prehistoric social relations in
Central Iberia. Some have considered the existence of chiefdoms, especially during the bell-beaker
phenomenon, but their arguments should confront an undeniable lack of evidence to support their claims.
Others have considered them to be transegalitarian (Garrido, in this volume). Clark and Blake (1994) and
Hayden (1995; 2001) have used this term to define societies “with private ownership of resources and
produce, low levels of sharing, and institutionalized hierarchies based ultimately on wealth (but also
including ritual, kinship, and political dominance) [who are also] characterized by the production and
transformation of food surpluses, economically based competition, the use of prestige goods, and a range
of specific feasting patterns” (Hayden 2001: 232). If I understand Hayden’s definition correctly, the
presence of unequal distribution of a significant amount of wealth is the key feature to recognize
‘transegalitarism’, and up to date, this kind of evidence is mostly lacking in the discussed area. Of course,
the definition is flexible enough to include a wide range of archaeological variability (Natufian, American
Northwest Coast, Levant PPNB, Western European megalithic cultures, etc), and the generalization of
such labeling may not always help us to understand the specific nature of social, economic, and/or
political inequalities.

Finally, I have defended the existence of a kin-based mode of social organization (following Wolf 1982),
with few evidences for social inequality, and a strong capacity to regenerate itself, limiting the options of
potential leaders to transmit their power at their will (Díaz-del-Rio 2001: 317). This has been wrongly
interpreted as a statement favoring the existence of an egalitarian society, and thus requires some
clarification.

Vicent (1995: 178) has stressed two limiting factors for socio-political change in prehistoric Iberia: “the
resistance against the logic of accumulation of wealth and power by means of intra-community
exploitation, and the absence of a means of accumulation of value due to the absolute predominance of
use value”. Both factors were at work in central Iberian Prehistory. The structural limits of any long-term
political change were constrained by a modest surplus production, mostly oriented to assure the
reproduction of small-scale groups, the failure to enforce socioeconomic or ideological mechanisms
needed to increase the amount of labor force and, overall, no long term means of accumulation of value.
Under these conditions, I see no way in wich potential leaders could have perpetuated their power.
In order to refine the observed socioeconomic dynamics we will need to recover more and better data, oriented to increase our knowledge of both the productive and reproductive activities of these groups. Contrary to what was previously assumed, Central Iberian prehistoric groups did leave a rich and variable archaeological record, one that allows multiple lines of inquiry. One just has to pose good questions. And expect challenging answers.

ACKNOWLEDGEMENTS

This research has been funded by the Dirección General de Universidades e Investigación, Consejería de Educación, Comunidad del Madrid, Project title: “Paisajes Prehistóricos en la cuenca media del Jarama: indicadores tecnoeconómicos y ambientales a escala semimicro-local” Ref. nº 06/0081/2003,

REFERENCES

PEÑA-CHOCARRO, L. in press: “Early agriculture in Central and Southern Spain”.

Figure 2.- Contrast between the Neolithic habitational site of La Deseada (A) and the flint mine of Casa Montero (B) (following Díaz-del-Río & Consuegra 1999; Consuegra per. com.).

Figure 3.- Copper Age enclosures from Madrid region (following Díaz-del-Río 2004).

Figure 4.- EBA site distribution in Gózquez (San Martín de la Vega, Madrid) and analysis of variance (storage capacity, pottery sherds and flint remains) (following Díaz-del-Río & Vicent in press).

Figure 5.- Characteristic Bronze Age burials from Las Matillas (Alcalá de Henares, Madrid) (following Díaz-del-Río et al 1997).

Table 1.- Coefficients of variation (CV) of beaker pottery heights and rim diameters (raw data obtained from Garrido 2000).

Table 2.- Comparative quantification of Southeastern (Millarian and Argaric) and Northern Meseta Chalcolithic and Bronze Age metallurgy (data obtained from Montero, 1994; Herrán, 1997). Gold objects from the Meseta following Garrido (2000: 197). Part of Bell-beaker phenomenon in the Meseta is contemporaneous to the early Argar phase, and is quantified as part of Copper Age metalwork. Multifunctional or ambiguous objects (weapons-tools) as daggers and axes have been included as weapons in all cases.
tools weapons ornaments
<table>
<thead>
<tr>
<th>Sample</th>
<th>#</th>
<th>CV (%) rim diam</th>
<th>CV (%) height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell-beaker all types</td>
<td>61</td>
<td>17,58</td>
<td>19,38</td>
</tr>
<tr>
<td>Bell-Beaker nondec</td>
<td>12</td>
<td>18,87</td>
<td>25,74</td>
</tr>
<tr>
<td>Bell-Beaker puntillado</td>
<td>8</td>
<td>20,31</td>
<td>20,18</td>
</tr>
<tr>
<td>Bell-Beaker maritime</td>
<td>9</td>
<td>10,09</td>
<td>17,85</td>
</tr>
<tr>
<td>Bell-Beaker Ciempoz</td>
<td>32</td>
<td>16,76</td>
<td>15,57</td>
</tr>
<tr>
<td>Cazuela all types</td>
<td>29</td>
<td>24,09</td>
<td>19,5</td>
</tr>
<tr>
<td>Cazuela Ciempoz</td>
<td>26</td>
<td>23,89</td>
<td>19,5</td>
</tr>
<tr>
<td>Cazuela Cuesta Reina</td>
<td>4</td>
<td>5,12</td>
<td>6,26</td>
</tr>
<tr>
<td>Bell-beaker Cuesta Reina</td>
<td>2</td>
<td>18,28</td>
<td>4,52</td>
</tr>
<tr>
<td>Cuenco Cuesta Reina</td>
<td>3</td>
<td>12,11</td>
<td>15,73</td>
</tr>
<tr>
<td>Cazueilla all types</td>
<td>12</td>
<td>29,7</td>
<td>21,52</td>
</tr>
</tbody>
</table>