LA MINERÍA DE SÍLEX EN CASA MONTERO

La última estrategia documentada permite la explotación laminar en superficie y requiere de una configuración de la superficie de talla muy compleja, similar a una reducción de *livre de beurre*. Los productos resultantes son más anchos y más resistentes. No son apropiados para la producción de microlitos, sino para la obtención de un soporte resistente en una sola pieza.

V. Perspectivas
Las evidencias recuperadas en Casa Montero abren un conjunto de líneas de investigación prometedoras. Por una parte, la producción de herramientas de sílex y su uso es probablemente la única artesanía que podemos analizar desde la obtención de materias primas a su abandono último, algo prácticamente imposible en otros aspectos de la economía neolítica. Por otra parte, el estudio de los métodos de extracción de sílex permitirá determinar los modos y escala en la que fue movilizada la fuerza de trabajo. Considerando el tamaño de los grupos neolíticos y las posibles densidades de población, es previsible que existiesen mecanismos sociales cooperativos tanto para movilizar a los equipos de trabajo como para distribuir los productos resultantes.

3. Diseño de un muestreo sistemático para la excavación de la mina neolítica de Casa Montero

I. ¿Por qué un muestreo?
Casa Montero cuenta con un total de más de 3000 pozos mineros neolíticos localizados. Durante la primera campaña se recuperaron 32 toneladas de sílex en un total de 122 pozos excavados (fig. 6.1). Las primeras valoraciones de las cadenas operativas líticas sugieren que su variabilidad no es elevada, lo que provoca la siguiente pregunta: ¿cuántos pozos deben excavar para alcanzar un conocimiento estadísticamente significativo de la totalidad del yacimiento?

La estrategia debe ir dirigida a resolver los siguientes aspectos:
• Determinar la estructura de la formación geológica
• Caracterizar el margen cronológico de la explotación
• Valorar el posible carácter estacional de la explotación
• Determinar la variabilidad espacial y cronológica en el trabajo del sílex
• Evaluar las posibles estrategias de explotación minera

Los objetivos imprescindibles del muestreo son los siguientes:
• Garantizar que la fracción del área de intervención que se excave es representativa de la totalidad de la misma.
• Garantizar que no se pierda información crucial para su interpretación.

6. Pedro Díaz-del-Río, Juan M. Vicent, Elías López-Romero e Ignacio de la Torre.
II. Estrategias en contextos similares

Existe un conjunto de problemas comunes a todos los proyectos de mitigación de impacto arqueológico en minas de silex prehistóricas (fig. 6.2). Estos pueden resumirse en los siguientes:

- Delimitación espacial de la explotación minera
- Necesidad de conocer la estructura geológica
- Selección de la muestra a excavar ante la potencial variabilidad temporal y/o espacial de la explotación
- Procedimiento de la excavación limitado por problemas de seguridad
- Volumen de residuos líticos recuperados, su procesado y estudio

Hasta la actualidad ninguna de las intervenciones publicadas de minas prehistóricas europeas explicitan la argumentación estadística de la muestra seleccionada para su excavación. En la práctica, los procedimientos han pasado por la excavación de agrupaciones aleatorias de pozos, llegando en algunos casos al 10% del total de los detectados en el área abierta, aunque lo más frecuente es la realización de zanjas mecánicas orientadas a la recuperación selectiva de muestras.

III. Análisis preliminares

La primera aproximación para la definición un tamaño de muestra estadísticamente significativa recurrió a la información locacional, morfológica y contextual de un total de 122 pozos de extracción de silex excavados en la zona de Casa Montero que será preservada (fig. 6.3). Además, se recurrió a la información cuantitativa sobre la distribución de atributos relativos a la cadena operativa lítica de un total de 135 estratos de relleno excavados en 26 pozos.
Las pruebas estadísticas fueron encaminadas a investigar si existían variables cuantitativas que permitiesen orientar el muestreo. Para ello se analizó la información con la intención de resolver las siguientes preguntas:

- ¿Es posible predecir la profundidad de un pozo a partir de su diámetro?
- ¿Es posible predecir la profundidad de un pozo a partir de su distribución espacial?
- ¿Es posible predecir el número de estratos de relleno a partir de la capacidad de los pozos?
- ¿Es posible predecir el número de residuos líticos de cada pozo conociendo su capacidad?
- ¿Existe una variabilidad significativa de las cadenas operativas en los distintos pozos?

Los resultados de las distintas pruebas estadísticas indicaron que no existían parámetros para predecir el comportamiento de la muestra a excepción de la densidad de pozos y su distribución espacial.
IV. Diseño del muestreo

1. Base del muestreo: retícula ortogonal de 10 metros que define unidades muestrales de 100 metros cuadrados (fig. 7.1). Estas unidades cuentan con una extensión suficiente para permitir el reconocimiento de asociaciones significativas de pozos (o su ausencia).
2. Como resultado de su aplicación, se definen 246 celdillas de las cuales 135 cubren la zona de muestreo y 111 la zona de reserva del yacimiento.
3. Se propone la aplicación de un muestreo sistemático alineado, en cuanto permite obtener una medida de control local imposible de obtener con el muestreo aleatorio.
4. El tamaño de la muestra es siempre relativo a la o las características de la población que se investiga, las dimensiones de la misma y el grado de precisión que se desee alcanzar en

la estimación de los parámetros de la distribución de dichas características. Para ello se recurre a la siguiente fórmula:

\[n = \frac{N S_2}{(N-1)(B^2/12)+S^2} \]

5. Elección de las características del muestreo y estimación de parámetros: Dado que la muestra no se realiza para investigar una característica concreta de la población, sino para garantizar que múltiples características desconocidas puedan ser investigadas en el futuro, se ha escogido una variable conocida, la densidad de pozos en el espacio muestral. El objetivo del muestreo será por tanto la estimación de la distribución de la frecuencia de pozos por cada unidad muestreal en la subpoblación correspondiente.

A continuación se determinan los valores de los parámetros de la distribución de la frecuencia de pozos por unidad de muestreo para el total de la población y para las dos áreas definidas. Estos son:

<table>
<thead>
<tr>
<th>Total de Población</th>
<th>N (cuadrículas)</th>
<th>Media</th>
<th>Desviación típica</th>
<th>Varianza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>246</td>
<td>12.53</td>
<td>9.744</td>
<td>94.952</td>
</tr>
<tr>
<td>Área muestreo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N (cuadrículas)</td>
<td>135</td>
<td>8.94</td>
<td>46.862</td>
</tr>
</tbody>
</table>

6. Por último se calcula el tamaño óptimo de la muestra. Tomando como referencia la fórmula citada arriba, y sustituyendo sus valores por las estimaciones de los valores efectivos calculados a partir de nuestro conocimiento de la subpoblación a muestrear \((S_2 = 46.862; N = 135)\), para \(B=3\) y \(t=1.96\) (valor estándar para el intervalo de confianza del 95%) tenemos que:

\[n = \frac{135 \times 46.862/134 \times (9/3.8416)+46.8462}{17.53} \]

Es decir, asumiendo el nivel de precisión de 25% del valor de la media en un intervalo de confianza del 95%, deberían ser excavados entre 17 y 18 unidades de muestreo de 100 metros cuadrados para obtener una representación estadísticamente significativa en la variabilidad espacial del área de intervención.

7. Para su aplicación se ha utilizado un método de elección basado en la división de la retícula de muestreo en bloques de 3x2 unidades para las que se escoge siempre la primera. Esta elección garantiza la cobertura homogénea del área de intervención, adaptándose de la mejor manera posible a su forma irregular.
V. Diseño de la ejecución

• V.A. Alternativa 1

Propone la ejecución del muestreo sistemático mediante la localización y delimitación GPS de las coordenadas de las cuadrículas en las que deben excavarse la totalidad de los pozos (fig. 7.2). Estas cuadrículas contarán con unas dimensiones de 10x10 metros. Los pozos serán excavados hasta la profundidad determinada por la normativa de seguridad en el trabajo. Se documentarán en sección así como las variaciones estratigráficas existentes. Posteriormente se rebajará por medios mecánicos la totalidad de la superficie restante incluida en cada cuadrícula, procediendo a la documentación de los perfiles y su entibado siempre que sea preciso. Este procedimiento se repetirá hasta finalizar la excavación total de los pozos.

Figura 7.2. Alternativas de ejecución de la excavación.

El procedimiento permite una excavación y documentación total de los pozos, así como la documentación de los 4 perfiles geoarqueológicos resultantes. Tras la excavación de todas las cuadrículas pueden realizarse un conjunto de zanjas orientadas este-oeste y norte-sur que permitan obtener secciones transversales de la estructura geológica.
V.B. Alternativa 2

Propone la ejecución del muestreo sistemático por sectores amplios que incluyan las cuadrículas a muestrear. Estas cuadrículas contarán con unas dimensiones de 10x10 metros, y se excavarán por grupos y simultáneamente, comenzando por aquellas dispuestas en los extremos sur y norte del trazado actual. Tras la excavación en profundidad que determine la normativa de seguridad, se procederá al rebaje mecánico de la superficie y la generación de un perfil estratigráfico que cubra la totalidad del trazado en su eje este-oeste. Esta operación se repetirá en profundidad hasta la finalización de la excavación de los pozos y la obtención de un perfil geoarqueológico completo, que puede documentarse de forma ágil mediante fotografía digital georeferenciada. El frente de excavación se avanzaría para incorporar las siguientes agrupaciones de cuadrículas hasta completar por el mismo procedimiento la documentación total del yacimiento.

Este procedimiento permite documentar los pozos muestreados y obtener secciones geoarqueológicas este-oeste y norte-sur para la reconstrucción tridimensional de la estructura geológica del yacimiento. A su vez, permite agrupar los pozos no muestreados por profundidades siempre que se localicen en planta aquellos que permanecen tras los distintos rebajes mecánicos.